

NUTRIENT DEFICIENCY KEY

Neil Mattson
Cornell University

Adapted from a written nutrient deficiency key by Brian Krug, UNH and Paul Nelson, NCSU

Diagnosing Nutrient Disorders

Neil Mattson, Asst. Professor and Floriculture Extension Specialist, Cornell University
134A Plant Science Building, Ithaca, NY 14853
email: nsm47@cornell.edu phone: (607) 255-0621

Helpful Definitions

<u>Chlorosis</u>	leaf yellowing
<u>Necrosis</u>	tan/brown/blackened cells (tissue death)
<u>Marginal</u>	the edge of a leaf
<u>Interveinal</u>	between the veins
<u>Leaf distortion</u>	incomplete or abnormal expansion during leaf unfurling, irregular leaf shape

How to read a substrate/tissue test to diagnose nutrient disorders

Important make sure you understand the units these are being reported in

- EC: 1 mhos/cm = 1 dS/m = 1 mS/cm = 1,000 μ mos/cm = 100 mhos \times 10⁻⁵ cm
- Macronutrients (N, P, K, etc.)
 - usually reported in ppm on the substrate (container media test)
 - usually reported in percent (%) on the tissue test
- Micronutrients (Fe, Mn, Zn, B, etc.)
 - usually reported in ppm on both substrate and tissue tests

Steps to follow

- 1) Look at electrical conductivity (on soil tests – not on tissue tests)
 - High EC means plants have been overfertilized, underleached, or had high salts (such as from compost)
 - Low EC means plants have been underfertilized (check rates/injector), or overleached
- 2) Look at pH (on soil tests – not on tissue tests)
 - Remember pH effects nutrient availability
- 3) Check concentrations of macronutrients (N, P, K, Ca, Mg, S)
 - Are these within range or too low/too high?
 - Is there a pattern with many of them? (Such as several macronutrients too high = overfertilization).
 - On substrate tests nitrogen is usually listed as both nitrate (NO₃) and ammonium (NH₄). Ammonium (NH₄) is the acidic form of nitrogen it is beneficial for keeping pH down, BUT the amount must typically be much lower than nitrate or plants can get burned from ammonium toxicity.

- 4) Check concentration of micronutrients (Fe, Mn, Zn, B, Ni, Mo)
 - Are these within range or too high or too low?
 - Is there a pattern with many of them?
 - several micronutrients too low, usually means substrate pH is too high
- 5) Look at two ratios
 - Calcium:Magnesium (Ca:Mg) this should be roughly 3:1 (too much calcium can limit magnesium uptake by the plant and vice-versa)
 - Nitrate:Potassium
- 6) Consider other causes of fertility problems
 - poor weather (low temperature and high ammonium fertilizer → ammonium toxicity)
 - poor drainage of container
 - over/under watering
 - poor light
 - nutrients can be tied up by the substrate (if pH is not balanced)
 - antagonisms with other nutrients (too much Ca can limit Mg uptake, etc.)
 - poor water quality (can lead to soluble salt burn, high pH, etc.)

Possible Causes of Plant Disorders

Environmental causes

- Too much/little light
- High/low temperature
- Too much/little water
- High humidity lack of air flow
- Poor substrate aeration

Fertility Problems

- Deficiencies
- Toxicities
- pH
- High soluble salts

Pests and Diseases

- Viruses
- Insects
- Bacteria
- Mites
- Fungus
- Water molds
- Nematodes
- Etc.

Air pollutants

- Ammonia
- Ozone
- Ethylene

- Symptoms of ethylene (top growth deformed, leaves bending downward but not wilting [epinasty], flower bud abortion leaf chlorosis)

Phytotoxicity from chemical applications, often uniform symptoms develop a few days after application

- Pesticides
- Foliar Iron Chelate
- Growth Regulators

Herbicide Injury

- Volatilization
- Drift onto crop
- Persistence in soil
- Pots or potting mix in contact with herbicide

ONLINE RESOURCES

Greenhouse Nutrient and Fertilizer Management

<http://www.greenhouse.cornell.edu/crops/nfmanagement.htm>

Contains links to several articles by Neil ☺

North Carolina State University Nutrient Deficiency Series

<http://www.ces.ncsu.edu/depts/hort/floriculture/def/>

Online version of some of the book material

Online Fertilizer Calculator

<http://extension.unh.edu/agric/AGGHFL/fertilizercalculator.cfm>

Online Alkalinity Calculator

<http://extension.unh.edu/agric/AGGHFL/Alkcalc.cfm>

Commercial Testing Labs for Tissue, Water, or Substrates

- Dairy One / Agro-One <http://www.dairyone.com/AgroOne/>
 - \$24 tissue testing (Service Package 180, results only)
- A&L Eastern Laboratories <http://www.aleastern.com/>
 - \$24-30 (\$2 extra for tissue recommendation using NutriScription®)
- JR Peters Laboratory <http://www.jrpeters.com/>
 - \$36 for tissue, media, or water analysis (soil does not include OM)
- Macro Micro Laboratory <http://www.mmilabs.com/>
 - \$45 for tissue, media, soil, or water analysis
- Everris Testing Laboratory <http://protestinglab.everris.us.com/>
 - \$34 for tissue, media, soil or water analysis

Sampling procedures for substrate, water, fertilizer solution, and plant tissue

<http://www.ces.ncsu.edu/depts/hort/floriculture/hils/HIL560.pdf>